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ABSTRACT

The completed cost of a competitively bid construction project often exceeds the
original low bid. This paper presents two models to predict completed construction cost
based upon characteristics of the submitted bids. Data on completed projects were
obtained from New Jersey Department of Transportation for 298 highway construction
projects. Median bid and normalized median absolute deviation (NMAD) were selected
from various bid characteristics as the best predictors of completed construction cost.
Regression and neural network models were developed from the data. Both models have
similar utility to predict completed costs. Due to ease of use, the regression model is
preferred over the neural network model.

INTRODUCTION

Construction involves bringing equipment, materials and labor to a unique site
and building a unique product. The product remains fixed at the site after the
construction team leaves. Construction differs from manufacturing where
product lots or batches are produced at fixed locations and finished products are
distributed to the user [12]. Most public works projects are procured through
competitive bidding. Constructors submit bids based upon a defined scope of
work, and contracts are awarded to the lowest responsive, responsible bidder.
The constructor’s compensation can be based upon a fixed Jump sum fee for the
defined scope of work but frequently a unit-price contract is used. Through
change orders, additions and deductions to the scope of work are made, and the
constructor’s compensation is increased or decreased respectively.

The completed cost to the owner of a competitively bid project often
exceeds the original low bid. Factors that contribute to cost overruns include
bidding errors, poor design, design constructibility, project complexity, poor
construction _management, location, weather, labor relations and material
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availability. The impact of these factors is difficult to predict. Large increases
in cost present a risk to the owner because they can exceed the project budget. If
the completed construction cost could be predicted, the financial risk could be
objectively evaluated. The following actions could be taken if the projected
completed cost exceeds the construction budget:

l. accept the low bid and the increase in the project budget
2. reject all bids and solicit new bids
3. implement tighter construction management controls.

RELATED RESEARCH

Recent research has focused on the development of complex and
mathematically rigorous models to evaluate the effects of many different factors
on completed construction costs [1] [9] [16]. Other researchers have used
common statistical techniques. Pedwell, Hartman and Jergeas [13] used
multiple linear regression to evaluate the effect of coniractual complexity,
design completeness and contract type on construction schedules and costs in
the oil industry. Bacon, Besant-Jones and Heidarian [2] used multivariate
regression to identify correlation between project characteristics, and schedule
and cost overruns on World-Bank-financed, power generation projects in
developing countries. Their dependent variables characterized plant technology
and size, procurement environment and host country. These two studies used
the results to make recommendations about the procurement processes studied.
Brandon [3] reported on using stepwise linear regression (o estimate the
contract cost of building construction in the U.K. Building size, contract
duration and number of bidders were used as cost predictors. Williams, Miles &
Moore [17] used linear regression to develop models to predict the completed
cost from the low bid amount for highway construction projects in the U.K. and
the U.S.A. They concluded that there is a distinct multiplicative relationship
between low bid and final cost that indicates that final cost increases as a power
of the low bid.

Smith and Mason [14] compared the effectiveness of neural network and
regression models for parametric cost estimating. They concluded that
regression models have significant advantages with respect to accuracy,
variability, model creation and model examination. This is true when an
appropriate model can be discerned beforehand; however, neural networks have
advantages when dealing with data that does not fit low order polynomials.
Simple models that are easily understood and applied by practitioners are
desired. This study attempts to show that a simple model can be developed. The
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goal was to predict completed construction cost of a project based upon
characteristics of the bids received. In this study, both ncural network and
regression models were developed. Their effectiveness to predict completed
construction cost based upon characteristics of all the submitted bids were
compared.

Bip CHARACTERISTICS

Bid characteristics studied include the number of bidders, lowest bid, mean bid,
standard deviation, median bid, normalized median absolute deviation
(NMAD) and spread. These characteristics are discussed in the sections below.

NUMBER OF BIDS

The number of bids submitted on a project shows the competitiveness of the
construction market. High numbers of bids suggest a very competitive market.
The number of bids received on the projects included in this study ranged from
two to seventeen. (Projects with only one bid submitted were excluded because
standard deviation, NMAD and spread cannot be calculated.) In a highly
competitive market, bidders may be more willing to take risks by submitting
unusually low bids. They hope to regain profit sacriticed to “buy” the contract
by submitting claims [18]. This practice, if successful, increases the completed
cost over the low bid and, potentially, over the budget.

Low BID

A high correlation was anticipated between the low bid and the completed
construction cost. If there were no change orders, there would be no difference
between the bid and completed cost on a lump sum contract. On a unit price
contract, the only difference between the low bid and the completed cost would
be due to differences in measurement of quantities.

MEAN BID AND MEDIAN BID

The mean (or average) of the bids represents the market’s consensus of the true
cost of the project. Variations about the mean represent differences in
judgment, assumptions or minor bidding errors [5]. Crowley [6] suggests that
the median is a better estimate of consensus cost bccause its robust nature
eliminates the intluence of spurious bids.
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STANDARD DEVIATION AND NORMALIZED MEDIAN ABSOLUTE DEVIATION
Standard deviation of bids mecasures the variation about the mcan. It is an
indicator of the bidders’ uncertainty about the value of the project. Projects
where high standard deviations occur indicate that there is considerable
uncertainty among the bidders about the project cost. It can be postulated that a
project with a high standard deviation may be prone to larger cost escalation
during construction than a project with a low standard deviation and little
disagreement among the bidders. This uncertainty could be due to vagueness of
the contract documents. For example, the scope of work or field conditions may
be poorly documented. In addition, uncertainty could be due to other variables
such as availability of labor, equipment or materials; availability of right-of-
way or sitc access; or third party involvement (railroads, utilities. etc.) Usually,
uncertainty causes individual bidders to submit higher bids.

Alternatively, the normalized median absolute deviation (NMAD) can be
used. This statistic mecasures variation about the median. Like standard
deviation, this statistic can be used as an indication of the variations between
bidders. It is calculated as follows:

NMAD = median(|Bid, — M |/ 0.6745) (1)

where Bid, is the ith bid, M, is the median of the bids and the constant 0.6745
is a normalizing constant corresponding to the Z-score partitioning 25% of the
normal distribution into the right tail. Crowley [6] has found that NMAD is a

superior estimator of bid variation.

SPREAD

Gatcs [8] defines spread as the difference between the low bid and the second
low bid or “the money left on the table.” This measure assumes that the second
low bid is a rcasonable bid and that the second low bid is not a spurious bid.
Alternatively, spread can be calculated as the difference between the low bid
and the mean bid or consensus value,

Spread is an indicator of another risk to the owncr. Occasionally, an
unusually low bid is received. A bidder who does not recognize uncertainty can
submit these unknowingly. In addition, a low bid can be submitted knowingly
by a bidder who chooses to exploit uncertainty to generate claims for additional
compensation [18]. While the owner may want to contract with these bidders (o
oblain a bargain, the owner may be accepting additional risk. The first type of
bidder may have trouble completing the work on time, il at all. When the error
is discovered, the constructor may scek additional compensation through claims
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and change orders to compensate for the inadequate bid. The second bidder
type counts on change orders and claims to make a profit. In both cases, the
owner will incur additional costs due to the claims themselves, processing and
negotiating the claims and completion delays.

CosT ESCALATION AND COMPLETED COST

The purpose of the study was to develop models to predict increases in
construction cost above the low bid. Two dependent variables were selected for
prediction: completed cost and escalation. Completed cost is the amount paid to
the constructor after all change orders are negotiated and executed. Largely, the
completed cost depends on the project size. Escalation is defined, in the study,
as the ratio of the completed cost to the low bid. The ratio was selected so that
comparisons over a range of different project sizes could be made. A ratio
greater than one represents an increase in cost to the owner. Conversely, a ratio
less than one represents a cost saving for the owner.

DATA COLLECTION

Data for this study was obtained from the New Jersey Department of
Transportation (NJDOT). The Bureau of Roadway Plans and Specifications
provided bid summary tables for highway construction projects advertised
between February 1989 and January 1996, inclusive. The tables list the amount
of each bid submitted on the projects. A database table was created manually by
entering each project and its bids into a database program.

Information on completed projects was obtained from NJDOT’s Bureau of
Construction Engineering. Database files were provided from their computer
records of completed projects. The database files were imported into the
database program and cross-tabulated with the bid data. After records with
missing or suspect data were eliminated, a table containing 298 records was
created. For each construction project, the database contained fields with an
identitying number (DPNUM), project location, construction type, project size,
bid data, completion date, original contract amount, completed contract amount
and all bids received. This table was exported to a spreadsheet program for
further data manipulation and preparation of data sets.

The projects included in the study have a total value of $1.51 billion (in
1999 dollars) or approximately 50 percent of the value of all NJDOT projects
bid over the period. They include new highway and bridge construction, bridge
and highway reconstruction, widening, resurfacing, bridge repair, intersection
improvements, safety and traffic control, miscellaneous and unique projects. It
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was assumed that these projects represent a random sample of all project types
bid by the NJDOT.

The bids were received by NJIDOT over a seven-year period. To eliminate
the effects of inflation, all bids and costs were converted to 1999 dollars using
the ENR Construction Cost Index [9] and the following equation:

C,=C x(,/1) )

where C, = cost in year two dollars, C; = cost in year one dollars, l; = ENR
Construction Cost Index for year 2 and /; = the ENR Construction Cost Index
for year 1. TABLE | presents univariate statistics for the data set in 1999
dollars.

TABLE:1. Univariate Statistics of 298 NJDOT Projects (1999 dollars)

Description Lowest  First Quartile Median Third Quartile Highest
Number of Bidders 2 5 6 9 17
Low Bid $23,786  $737,266 $1,545,520 $3,449,208 $66,567,024
2nd Low Bid $26,829 $812,874 $1,622,628 $3.676,656 $73,264,210
Mean Bid $33,992  $906,284 $1,782,257 $4,024,154 $72,080,807
Median Bid $30,448 $886,041 $1,708,598 $3,943,882 $70,348,202
Standard Dev. $12,309 $102,849 $ 210,590 $ 468,696 $ 7,349,627
NMAD $ 3,018 $ 79485 $ 177,619 $ 408,199 $ 7,373,985
Spread (Low Bid) $§ 107 $ 30,821 $ 82735 §$ 216,824 $ 6,697,186

Spread (Mean Bid) $ 6,492 § 91,222 $ 212,723 $ 485484 $10,040,701
Completed Cost $ 8,626 $747,789 $1,639,458 $3,712,551 $73,036,689

The technique of data-splitting (cross-validation) [11] was used, as
described below, to validate the models. The complete data was separated into a
model subset and a validation subset. The validation data, consisting of 50
projects, was created by selecting every sixth project. This sclection method
eliminated effects of potential, hidden, temporal trends in the data.

REGRESSION MODEL

The first step in the development of the regression model was to test the
correlation between the bid characteristics (independent variables) and
escalation and completed construction cost (dependent variables). TABLE 2 [ists
the Pearson Correlation Coefficients for each bid characteristic. From
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inspection of the table, the correlation between bid characteristics and
escalation is very weak so prediction of escalation was abandoned. The
correlation between the remaining bid characteristics and completed cost is
very strong except for the number of bidders.

TABLE: 2. Correlations Between Bid Characteristics and Escalation and
Completed Cost

Bid Characteristic Escalation Completed Cost
Number of Bidders 0.003 0.241
Low Bid 0.079 0.982
2nd Low Bid 0.083 0.979
Mean Bid 0.083 0.979
Median Bid 0.085 0.980
Standard Deviation 0.104 0.877
NMAD 0.128 0911
Spread (Low Bid) 0.090 0.656
Spread (Mean Bid) 0.109 0.833

Sccond, a stepwise linear regression analysis was performed using the data
set. The analysis revealed that all the bid characteristics contribute information
to the regression model except spread and standard deviation. High
multicolliniarity existed between median bid, mean bid, and low bid. This
suggested that these statistics contributed redundant information to the model
so mean and low bid statistics were dropped. Median bid and normalized
median absolute deviation were selected for further analysis.

Third, using the method of lcast squares, a linear regression model was
constructed using 248 projects in the model subsct. The following equation was
derived:

CCost = 0.9510*(Median) + 0.9094 * (NMAD) - $278,973. (3)

where CCost = completed construction cost, Median = median bid and NMAD
= normalized median absolute deviation of the bids. The multiple coefficient of
determination was 0.992 and the root mean square of error was $1,001,006.
Fourth, a residuals analysis was performed. All tests were satisfactory
except a plot of residuals versus predicted values of completed cost suggested
heteroscedasticity. Natural logarithm variance-stabilizing transformation was
applied to the dependent variable: completed cost; however, the resulting
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models produced inferior results. A multiplicative model was constructed by
transforming both independent and dependent variables using the natural log
function. The following model was developed:

In(CCost) = 1.0979 * In(Median) —0.0857 * In(NMAD)-0.5127 4)

which can be transformed into:

A Median”1.0979
ECCost = (5)
1.67"(NMAD)"0.0857

This model did not exhibit heteroscedasticity as the linear model did. The
multiple coefficient of determination was 0.967.
Fifth, the validation subset was used to make predictions and the

coefficient of determination was calculated.
NEURAL NETWORKS

Artificial neural networks (ANNs) attempt to imitatc the learning ability of
biological brains. In ANNs, processing elements called nodes or neurons are
arranged and interconnected in a network. Many topologies with differing
characteristics have been developed. Well-known examples are the Hopfield
nctwork and the Kohonen network. ANNs can be “hardwired” in electronic
circuits or simulated using software on conventional serial computers. For this
study, simulation software was used.

A multi-layer perceptron (MLP) model was selected for the study becausc
MLP’s are optimized for prediction applications {15]. In MLP's, neurons are
arranged in layers. Each node is connected to all nodes in the next layer. Each
connection has a weight (w) that determines how strong the connection is
within the network. Higher weighted connections contribute more to the
solution. Data are fed to the top layer or input layer. Each node processes the
data and passes its output to the next lower level. Data is passed to lower layers
until it reaches the lowest level or output level. Intermediate layers are called
hidden layers. One input node is required for each datum in the problem set,
and one output node is required for each datum in the solution set. Nodes
process the input data using the following equations [3]:
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IN = Zw ‘X (6)

where:IN = the net input to the node, w, = the weight of the nth connection and
x, = the input from the nth connection, and;

OUT =1/ (e ) N

where OUT = the output from the node and k = a constant, and e = the base of
the natural logarithm. The latter equation is called the activation function. The
form shown here is the sigmoid function. It has an S-shape curve.

Training is accomplished by presenting training sets of input patterns
(problem data) and output patterns (solutions) to the network. As the training
set is processed by the network, the network learns how to estimate the correct
solution. The steps in the training process are as follows [3]:

I.  Present an input pattern and let the ANN produce an output
using its current weights.

£

If the output is the same as the desired output, go back to step 1
using the next input pattern.

3. If the output does not match the desired output, adjust the
weights associated with each active connection. Inactive
connection weights are not changed because they do not
contribute to the solution. In MLP’s using the backpropagation
method, weights are adjusted to reduce half the sum of squares of
errors.

4. Repeat the process for each input pattern until the error falls
below a given threshold.

Once the ANN is trained, new problem data can be fed to it and solved.
One problem with training ANNs is overtraining. Overtraining occurs when
the ANN “memorizes” the input and output data. When overtrained, ANNs
produce exact solutions for the training set but do not produce acceptable
solutions for new problem data. To avoid overtraining, a validation subset is
created from the training set. During the training cycle, the error of the
validation set is measured. During the early stages of learning, the error of the
validation set will decrease at the same rate as the training set if the ANN is
training well. When the ANN begins to learn the noise in the data, the
validation set error will begin to increase while the training set error will
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continue to decrease. The optimum network is the one that has the lowest
validation set error [15].

MULTILAYER PERCEPTRON MODEL

The first step in selecting the MLP topology is determining the number of
layers and the number of nodes in each layer. The number of nodes in the input
layer must match the number of fields in the input records. The input fields
consist of median bid data and NMAD data so two input nodes are required.
The output field is completed construction cost so one output node is required.
The number of nodes in the hidden layers and the number of hidden layers
required to produce good results cannot be determined beforehand. Trial-and-
error must be used to find the best combination of layers and nodes. Certain
rules of thumb have been recommended based upon experience of neural
network developers. For most models, one or two hidden layers is adequate [7].
Also, the maximum number of connections in the network should be one-tenth
the number of training sets [15]. Given 248 records in the training set, the
maximum number of connections could be 25. Therefore, the number of hidden
nodes in one hidden layer can be calculated as follows:

W Bl +O )X HL, ®)

where W,.x = maximum number of weights, .. = input nodes and O, =
output nodes and H,.. = hidden nodes. If W, = 25, e = 2 and Oppge = [,
then H,.q. = 8 max. The selected MLP topology consisted of two input nodes
connected to two hidden nodes in one layer that in turn were connected to one
output node resulting in six connections.
Second, training options of the MLP were configured as follows:
= The activation function defines how the net input to a node is
translated into an output value. The hyperbolic tangent function was
selected.
= Distribution of initial weights defines how weights are distributed at
the start of training. A uniform distribution was used.
= The learning rule determine how the connection weights are changed
as the neural network learns. The conjugate gradient rule was selected.
It measures the error surface gradient and uses a compromise between
the direction of the steepest gradient and the previous direction of
change [15].
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* Training stop threshold sets goals for when training is complete. RMS

=0.001 and percentage correct = 75% were used.

Training the MLP model was performed using the estimation subset. The
problem set (i.e. input data) consisted of median bid and NMAD. The solution
set (i.e. output data) consisted of the corresponding completed construction
costs. The input and output to the neural network were the samec as the
independent and dependant variables used in the regression model so that a
comparison between the two models could be made.

Once trained, the model was used to predict completed cost. The validation
subset was run through the neural network to make predictions. The results
were compared to the actual completed costs, and the coefficient of
determination was calculated.

MODELING RESULTS

Data-splitting (cross-validation) was used to validate the model results. This
technique calls for splitting the data into model and validation subsets and
comparing measures of model validity such as coefficients of determination or
mean square of errors for each subset [11]. If the validation measures are close,
the model can be considered valid. Coefficients of determination were
calculated for the model subset and the validation subset for both models. The
results are summarized in TABLE 3. The results indicate that approximately 99
percent of the variation in completed construction cost is predicted by the
median bid and NMAD of the bids. The high coefficients of determination for
the estimation and validation subsets give high confidence in both models.

TABLE 3. Model Coefticients of Determination

Model Model Subset Validation Subset
Neural Network 0.99 0.94
Multiplicative 0.97 0.98

FIGURE | shows a plot of actual completed construction costs versus the
models' predicted costs. The diagonal line represents a perfect match between
actual cost and predicted cost. The tight clustering of points along this line
shows graphically that the models give good predictions of completed

construction cost.
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FIGURE 1: Actual Cost Vs. Predicted Cost

The following example demonsirates an application of the multiplicative
regression model. Consider the bids listed in TABLE 4 for a representative
project selected from the data set. The median bid is $1,650,982. Using Eq. (1),
NMAD is calculated to be $171,823. Substituting these values into Eq. (5),
completed cost is predicted to be $1,429,211. The low bid was $1,465.966. This
suggests that the low bid was reasonable.

TABLE 4. Representative Bid Data

Description

Value

Low Bid
Median Bid
NMAD
Bid |
Bid 2
Bid 3
Bid 4
Bid 5
Bid 6
Bid 7
Bid 8
Bid 9

$1,465,966
$1,650,982
$171,823
$1,465,966
$1,535,088
$1,575,649
$1,644,122
$1,650,982
$1,728,437
$1,963,532
$2,164,540
$2,735,988
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The models are based upon highway construction projects in New Jersey,
USA, that had more than one bidder. The data set contains information on
projects with median bids ranging from $30,448 to $101,096,058 and NMAD
from $3018 to $7,373,985. Due to the limitations of the regression and neural
network models, application of the models should be limited to projects of
similar size. In addition, application to other markets may produce unreliable
results so the model should be used with caution.

CONCLUSIONS

This study demonstrates that a simple model can be developed to predict the
completed cost of competitively bid construction projects. Bid characteristics,
specifically median bid and normalized median absolute deviation, are valid
predictors of completed construction cost. The multiplicative regression model
and neural network model are valid models, and both models produce
comparable results. The regression model produced a simple equation. It can be
used to make predictions with any handheld calculator whereas the neural
network model requires neural network simulation software. For this reason,
the regression model is preferred.
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